IBM Cloud から提供されている AI サービス IBM Watson の中で「音声→テキスト変換」を行う Speech to Text APIにおいて、2022/05/05 時点ではまだベータ版機能として提供されている "Speaker Labels" 機能を使ってみました。その様子をサンプルソースコードと併せて紹介します。

なお以下で紹介している様子および内容は 2022/05/05 時点のベータ版のものです。今後 API の実行方法や出力フォーマット、価格、提供しているソースコード等も含めて変更になる可能性もあることをご了承ください。


【Speech to Text サービスにおける Speaker Labels 機能とは】
一般的な Speech to Text サービスから提供されている機能の多くは「一人が話している前提」がありました。要は一人の人が話しているという前提で、その音声データをテキスト化する、というものでした。

IBM Watson Speech to Text サービスにおける Speaker Labels 機能はこの点を改良して、「複数人が話している可能性を考慮」した上で音声データをテキスト化するものです。なお、この機能は 2022/05/05 時点においてはベータ版として提供されており、英語に加えてスペイン語、ドイツ語、チェコ語、韓国語、そして日本語に対応しています。詳しくはこちらを参照ください:
https://cloud.ibm.com/docs/speech-to-text?topic=speech-to-text-speaker-labels


【サンプルとその使い方を紹介】
この Speaker Labels 機能を使った Node.js のサンプルアプリケーションを作って公開してみました。興味のある方はこちらから git clone するかダウンロードして使ってください:
https://github.com/dotnsf/s2t_betas


ソースコードを展開後の、アプリケーションの使い方を紹介します。まずアプリケーションを動かすためには Node.js v14 以上及び npm が必要なので、未導入の場合は自分のシステムにあったモジュールをインストールしておいてください:
https://nodejs.org/

また IBM Watson の Speech to Text サービスインスタンスの API Key およびサービス URL も必要です。無料のライトプラン※でも構わないので IBM Cloud 内に作成し、接続情報から API Key およびサービス URL (apikey の値と url の値)を取得しておいてください(すぐ後で使います):
2022050601

※無料のライトプランの場合、変換できるのは1か月間で 500 分ぶんのデータまで、という制約があります。


また実際に Speech to Text で変換する音声データファイルが必要です。特に今回は Speaker Labels 機能を使うため、二人以上で会話している際の音声データが必要です。自分で録音したものを使っても構いませんし、どこかでサンプルデータをダウンロードして用意していただいても構いません。以下の例では、こちらから提供されている日本語会話サンプルデータを使わせていただきました:
https://www.3anet.co.jp/np/resrcs/333020/

上述のページから提供されているサンプルデータをダウンロードし、使えそうな mp3 ファイルをソースコードの public/ フォルダ内にコピーしておいてください。とりあえず 007.mp3 というサンプルはいい感じに2名の男女が会話している様子のデータになっているので、以下はこのファイルをソースコード内の public/ フォルダにコピーできているものとして説明を進めることにします:
2022050602


会話の音声サンプルデータが public/ フォルダ以下に用意できたらアプリケーションを起動するための準備を(1回だけ)行います。まずソースコードフォルダ直下にある settings.js ファイルをテキストエディタで開き、取得した Speech to Text サービスの API Key とサービス URL をそれぞれ exports.s2t_apikey と exports.s2t_url の値として入力した上で保存します:
2022050603


そして依存ライブラリをインストールします。ソースコードフォルダ直下において、以下のコマンドを実行します:
$ npm install

これで起動の準備が整いました。最後にアプリケーションを起動します:
$ node app

成功すると 8080 番ポートでアプリケーションが起動します。実際に利用するにはウェブブラウザで http://localhost:8080/ にアクセスします。すると以下のような画面になります:
2022050601


左上にはソースコードの public/ フォルダにコピーした音声会話データのファイル名が一覧で表示されています。ここから 007.mp3 というファイルを選択してください(これが比較的わかりやすくていい感じの結果でした)。そして POST ボタンをクリックして Speech to Text を実行します:
2022050602


実行と同時に指定した音声ファイルの再生も開始します(つまり音が出ます)。並行して音声の解析が非同期に行われ、解析結果が少しずつ表示されていく様子を確認できます(ここまではベータ版の機能を使っていません):
2022050603


あるタイミングから確定した文節のテキスト内容が複数の色に分類されて表示されます。この色の分類が話している人の分類でもあります(下の結果では茶色の文字との文字になっているので、二人で会話している様子だと判断されていることになります):
2022050604


007.mp3 を最後まで解析し終えると以下のようになりました。(識別精度はともかく(苦笑))2つの文節の中で2人の人が会話している様子だった、と識別された様子がわかります:
2022050605


【サンプルソースコード内を紹介】
最後にこのアプリケーションのサンプルソースコードの内容を紹介しながら、どのように API を実行して、どのような結果を取得しているのか、という内容を紹介します。先に言っておくと、この Speaker Labels 機能を使う上で API の実行方法自体は(オプションを ON にする以外は)以前と全く同じです。実行結果に新しい情報が含まれるようになるので、その部分の対応が必要になります。 また該当部分はすべて app.js ファイル内にあるので、このファイルの内容と合わせて紹介します。

まず 27 行目で定義しているオブジェクトが Speech to Text 実行時のパラメータに相当するものです。この中で日本語変換モデル等を指定していますが、32 行目の speakerLabels: true によって、ベータ版機能である speakerLabels を有効に設定しています:
27: var s2t_params = {
28:   objectMode: true,
29:   contentType: 'audio/mp3',
30:   model: settings.s2t_model,
31:   smartFormatting: true,
32:   speakerLabels: true,
33:   inactivityTimeout: -1,
34:   interimResults: true,
35:   timestamps: true,
36:   maxAlternatives: 3
37: };

実際の音声→テキスト変換は 88 行目の processAudioFile() 関数で行っています。特にこの例では音声データファイルを一括変換する方法ではなく、WebSocket を使った非同期変換(少しずつ変換結果を受け取る方法)である recognizeUsingWebSocket() (90 行目)を使っています。そして SpeakerLabels を有効にしている場合、この実行結果(92行目)は2通り想定する必要があります。1つは「音声→テキスト変換結果」、もう1つは「どの部分を誰が話していたか、の判定結果」です(一括の同期変換を使った場合はこれらをまとめて取得できますが、今回は非同期変換を使っているためこれらの結果がバラバラに返ってくる可能性を考慮する必要があります):
90: var s2t_stream = my_s2t.s2t.recognizeUsingWebSocket( s2t_params );
91: fs.createReadStream( filepath ).pipe( s2t_stream );
92: s2t_stream.on( 'data', function( evt ){
        :



まず「音声→テキスト変換結果」が返ってきた場合です。この場合、92 行目の evt オブジェクト(=テキスト変換結果)は以下のような形で返されます:
        {
          result_index: 0,
          results: [
            { 
              final: true,
              alternatives: [
                {  //. 候補1
                  transcript: "音声メッセージが既存のウェブサイトを超えたコミュニケーションを実現",
                  confidence: 0.95,
                  timestamps: [
                    [ "音声", 0.36, 0.84 ],
                    [ "メッセージ", 0.84, 1.35 ],
                    [ "が", 1.35, 1.59 ],
                       :
                    [ "実現", 4.13, 4.7 ]
                  ]
                },
                {  //. 候補2
                  :
                }
              ]
            }
          ]
        }

まず変換結果をある程度の区切りでひとまとめにしています(ある程度の空白期間が生じるまでを1つの節とみなしています)。その区切りの番号が result_index 値です(上の例では 0 になっています)。そしてテキスト変換した結果が results 内に配列形式で格納されています。各配列要素の中に final というキーがあり、これが true の場合は節として変換結果が確定したことを意味します(false の場合は節が確定する前の、変換途中での結果が返されていることを意味します)。そして altervatives 内にその変換結果が可能性の高い順にやはり配列で格納されています。特にこの部分に注目してください:
                {  //. 候補1
                  transcript: "音声メッセージが既存のウェブサイトを超えたコミュニケーションを実現",
                  confidence: 0.95,
                  timestamps: [
                    [ "音声", 0.36, 0.84 ],
                    [ "メッセージ", 0.84, 1.35 ],
                    [ "が", 1.35, 1.59 ],
                       :
                    [ "実現", 4.13, 4.7 ]
                  ]
                },

文章としては「音声メッセージが既存のウェブサイトを超えたコミュニケーションを実現」というテキストに変換されていることに加え、その自信度が 0.95 であること、そして各単語が現れる音声開始からの通算秒数が timestamps という配列変数内に格納されています。この例だと音声スタートから 0.36 秒後から 0.84 秒後までの間に「音声」と話されていて、次に 0.84 秒後から 1.35 秒後までの間に「メッセージ」と話されていて、・・・といったように変換結果が分類されています(ここ、後で使います)。

次に変換結果として返される可能性のもう1つ、「誰がどの部分を話しているか」の結果が返される場合、evt 変数の内容は以下のようになります:
        {
          speaker_labels: [
            { 
              from: 0.36,
              to: 0.84,
              speaker: 0,
              confidence 0.67,
              final: false
            },
            {
              from: 0.84,
              to: 1.35,
              speaker: 0,
              confidence: 0.67,
              final: false
            },
              :
            {
              from: 4.13,
              to: 4.7,
              speaker: 1,
              confidence: 0.67,
              final: false
            }
          ]
        }

speaker_labels というキーが含まれている場合はこちらのケースと判断できます。そしてその中身は上の例であれば以下のような意味です:

・0.36 - 0.84 秒の間は 0 番目の人(自信度 0.67)
・0.84 - 1.35 秒の間は 0 番目の人(自信度 0.67) (この2つは同じ人)
   :
・4.13 - 4.7 秒の間は 1 番目の人(自信度 0.67)  (上とは別の人)

先程のテキスト変換結果の timestamps 値と合わせて、どの(何秒時点の)テキスト部分を何番目の人が話しているか、がわかるように speaker というラベルが付けられています。後はこれらをうまく組み合わせて、例えばテキストの色を分けて表示するようにしたものが提供しているサンプルアプリケーションです:
2022050600


なお、現時点での仕様としては以下のような制約があるようです:
・「2名で」話している前提で判断するよう最適化されている(実際には3名以上と判断される場合もあるが、あくまで2名の会話であることを想定した上で最適化されてラベルが付けられる)。
・speaker_labels の結果にも最終結果であることを示す final キーは存在しているが、final = true とならずに終わるケースが多い(なので、現状ここは無視してもよさそう)。


この辺りはあくまでベータ版での仕様なので、精度含めて今後の変更の可能性もあると思っています。ただ少なくともベータ版の現時点ではこの speaker_labels は無料で(無料のライトプランでも)使える機能のようで、今のうちから色々試してみたいと思いました。複数人の会話音声データから複数人の会話テキストを取り出せるようになると会議の議事録とかにも使えそうで、使い道の幅が大きく広がると期待しています。